Quadratic Chabauty for modular curves: algorithms and examples

Author:

Balakrishnan Jennifer S.,Dogra Netan,Müller J. Steffen,Tuitman Jan,Vonk Jan

Abstract

We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference68 articles.

1. BMS21 Besser, A. , Müller, J. S. and Srinivasan, P. , $p$ -adic adelic metrics and Quadratic Chabauty I, Preprint (2021), arXiv:2112.03873.

2. On the p-adic closure of a subgroup of rational points on an Abelian variety

3. The capacity pairing;Chinburg;J. Reine Angew. Math,1993

4. Computing local $p$-adic height pairings on hyperelliptic curves;Balakrishnan;Int. Math. Res. Not. IMRN,2012

5. Quadratic Chabauty for modular curves and modular forms of rank one

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On r-isogenies over $$\mathbb {Q}(\zeta _r)$$ of elliptic curves with rational j-invariants;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-06-25

2. Computing quadratic points on modular curves ₀();Mathematics of Computation;2023-10-03

3. Linear and Quadratic Chabauty for Affine Hyperbolic Curves;International Mathematics Research Notices;2023-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3