A local-global question in automorphic forms

Author:

Anandavardhanan U. K.,Prasad Dipendra

Abstract

AbstractIn this paper, we consider the $\mathrm{SL} (2)$ analogue of two well-known theorems about period integrals of automorphic forms on $\mathrm{GL} (2)$: one due to Harder–Langlands–Rapoport about non-vanishing of period integrals on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{F} )$ of cuspidal automorphic representations on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{E} )$ where $E$ is a quadratic extension of a number field $F$, and the other due to Waldspurger involving toric periods of automorphic forms on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{F} )$. In both these cases, now involving $\mathrm{SL} (2)$, we analyze period integrals on global$L$-packets; we prove that under certain conditions, a global automorphic $L$-packet which at each place of a number field has a distinguished representation, contains globally distinguished representations, and further, an automorphic representation which is locally distinguished is globally distinguished.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference31 articles.

1. Determination of cusp forms on GL(2) by coefficients restricted to quadratic subfields (with an appendix by Dipendra Prasad and Dinakar Ramakrishnan)

2. [SV00] Y. Sakellaridis and A. Venkatesh , Periods and harmonic analysis on spherical varieties.

3. Local ε-Factors and Characters of GL(2)

4. [Pra00] D. Prasad , A relative local langlands conjecture.

5. Distinguished representations for $SL(2)$

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acceptability of classical groups in non-zero characteristic;Linear Algebra and its Applications;2023-07

2. Distinction inside L-packets of SL(n);Algebra & Number Theory;2023-03-24

3. The SL1(D)-distinction problem;Pacific Journal of Mathematics;2019-07-18

4. Theta correspondence and the Prasad conjecture for SL(2);Pacific Journal of Mathematics;2018-04-11

5. Torsion homology growth and cycle complexity of arithmetic manifolds;Duke Mathematical Journal;2016-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3