On the potential automorphy of certain odd-dimensional Galois representations

Author:

Barnet-Lamb Thomas

Abstract

AbstractIn a previous paper, the potential automorphy of certain Galois representations to GLn for n even was established, following the work of Harris, Shepherd–Barron and Taylor and using the lifting theorems of Clozel, Harris and Taylor. In this paper, we extend those results to n=3 and n=5, and conditionally to all other odd n. The key additional tools necessary are results which give the automorphy or potential automorphy of symmetric powers of elliptic curves, most notably those of Gelbert, Jacquet, Kim, Shahidi and Harris.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference14 articles.

1. Functoriality for the exterior square of 𝐺𝐿₄ and the symmetric fourth of 𝐺𝐿₂

2. Cuspidality of symmetric powers with applications;Kim;Duke Math. J.,2002

3. [14] Taylor R. , Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, Preprint (2006).

4. [5] Harris M. , Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications, in Algebra, arithmetic and geometry–Manin festschrift, Progress in Mathematics (Birkhäuser, Boston, MA, 2007) (to appear).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Family of Calabi–Yau Varieties and Potential Automorphy II;Publications of the Research Institute for Mathematical Sciences;2011

2. Meromorphic continuation for the zeta function of a Dwork hypersurface;Algebra & Number Theory;2010-12-31

3. Arithmetic applications of the Langlands program;Japanese Journal of Mathematics;2010-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3