Abstract
In this paper, we deal with the first-order dynamic equations withnonmonotone arguments\begin{equation*}y^{\Delta }(t)+\underset{i=1}{\overset{m}{\sum }}p_{i}(t)y\left( \tau_{i}(t)\right) =0,\text{ }t\in \lbrack t_{0},\infty )_{\mathbb{T}}\end{equation*}where $p_{i}\in C_{rd}\left( [t_{0},\infty )_{\mathbb{T}},%\mathbb{R}^{+}\right) ,$ $\tau _{i}\in C_{rd}\left( [t_{0},\infty )_{\mathbb{%T}},\mathbb{T}\right) $ and $\tau _{i}(t)\leq t,\ \lim_{t\rightarrow \infty}\tau _{i}(t)=\infty $ for $1\leq i\leq m$. Also, we present a new sufficient condition for theoscillation of delay dynamic equations on time scales. Finally, we give anexample illustrating the result.
Reference21 articles.
1. R. P. Agarwal And M. Bohner, An oscillation criterion for first order delay dynamic equations, Funct. Differ. Equ.,16(1)(2009), 11–17.
2. M. Bohner And A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
3. M. Bohner And A. Peterson, Advances in Dynamic Equations on Time Scales. Birkhauser, Boston, 2003.
4. M. Bohner, Some Oscillation criteria for first order delay dynamic equations, Far East J. Appl. Math., 18(3)(2005), 289-304.
5. A. Elbert AnD I. P. Stavroulakis, Oscillations of first order differential equations with deviating arguments, Univ of Ioannina T.R. No 172, 1990, Recent trends in differential equations, 163-178, World Sci. Ser. Appl. Anal., 1 (1992) World Sci. Publishing Co.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献