Author:
Ethiraju Thandapani ,Renu Rama
Abstract
Some oscillation results are obtained for the third order nonlinear mixed type neutral differential equations of the form$$\left(\left(x(t)+b(t) x\left(t-\tau_1\right)+c(t) x\left(t+\tau_2\right)\right)^\alpha\right)^{\prime \prime \prime}=q(t) x^\beta\left(t-\sigma_1\right)+p(t) x^\gamma\left(t+\sigma_2\right), t \geq t_0$$where $\alpha, \beta$ and $\gamma$ are ratios of odd positive integers $\tau_1, \tau_2, \sigma_1$ and $\sigma_2$ are positive constants.
Subject
Geology,Ocean Engineering,Water Science and Technology
Reference23 articles.
1. R. P. Agarwal, M. F. Aktas, and A. Tiryaki, On oscillation criteria for third order nonlinear delay differential equations, Arch. Math., 45(2009), 1-18.
2. R. P. Agarwal, B. Baculáková, J. Dˇ zurina and T.Li, Oscillation of third-order nonlinear functional differential equations with mixed arguments, Acta Math. Hungar., 134(2011), 54-67.
3. R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation Theory for Difference and Functional Differential Equation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
4. B. Bacul´ıková and J. Dˇ zurina, Oscillation of third-order functional differential equations, Elec. J.Qual. Theo. Diff. Equ., 43(2010), 1-10.
5. B. Bacul´ıková and J. Dˇ zurina, Oscillation of third-order neutral differential equations, Math. Comput.Modelling, 52(2010), 215-226.