Transient solution of an $M^{[X]} / G / 1$ queuing model with feedback, random breakdowns and Bernoulli schedule server vacation having general vacation time distribution

Author:

G. Ayyappan ,S.Shyamala

Abstract

This paper analyze an $M^{[X]} / G / 1$ queue with feedback, random server breakdowns and Bernoulli schedule server vacation with general(arbitrary) distribution. Customers arrive in batches with compound Poisson process and are served one by one with first come first served basis. Both the service time and vacation time follow general (arbitrary) distribution. After completion of a service the may go for a vacation with probability $\theta$ or continue staying in the system to serve a next customer, if any with probability $1-\theta$. With probability $\mathrm{p}$, the customer feedback to the tail of original queue for repeating the service until the service be successful. With probability $1-p=q$, the customer departs the system if service be successful. The system may breakdown at random following Poisson process, whereas the repair time follows exponential distribution. We obtain the time dependent probability generating function in terms of their Laplace transforms and the corresponding steady state results explicitly. Also we derive the system performance  measures like average number of customers in the queue and the average waiting time in closed form.

Publisher

MKD Publishing House

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3