Investigation of 5G Wireless Communication with Dust and Sand Storms

Author:

Hammed Zainab Sh., ,Ameen Siddeeq Y.,Zeebaree Subhi R. M.

Abstract

The demands for higher throughput, data rate, low latency, and capacity in 5G communication systems prompt the use of millimeter-wave frequencies that range from 3–300 GHz with spatial multiplexing and beamforming. To get the maximum benefit from this technology, it’s important to study all the challenges of using mm-wave for 5G and beyond. One of the most important impacts is weather conditions such as humidity, temperature, dust, and sand storms. This study investigates the parameters of the channel model and its statistical behavior with the effect of dust and sand storms. The latter effects can be considered the main challenges these days, especially in middle-eastern countries. A 128 x 128 massive MIMO with URA (uniformly spaced rectangular antenna arrays) uniformly spaced has been considered in the simulation assessment with mm-wave channels operating at 28 GHz and 73GHz are examined by using NYUSIM (New York University Wireless Simulator) software. The simulation results show that the dust increases the attenuation and the path loss when working at higher frequencies compared to the clear weather conditions. Moreover, their effect can be reduced by adapting the transmitted power.

Publisher

Engineering and Technology Publishing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical modelling of dust storm path attenuation for 5G mmWave;Results in Engineering;2024-06

2. Adaptive Channel Switching for Connected Vehicles under Extreme Weather Conditions: A Reinforcement Learning Based Approach;2024 International Conference on Computing, Networking and Communications (ICNC);2024-02-19

3. Exploration of the Impact of 5G on Mobile Communication Systems;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

4. Numerical Modelling of Dust Storm Path Attenuation for 5g Mmwave;2024

5. Investigating and Implementing the Security of Mobile Devices in Wireless Networks;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3