Author:
Hammed Zainab Sh., ,Ameen Siddeeq Y.,Zeebaree Subhi R. M.
Abstract
The demands for higher throughput, data rate, low latency, and capacity in 5G communication systems prompt the use of millimeter-wave frequencies that range from 3–300 GHz with spatial multiplexing and beamforming. To get the maximum benefit from this technology, it’s important to study all the challenges of using mm-wave for 5G and beyond. One of the most important impacts is weather conditions such as humidity, temperature, dust, and sand storms. This study investigates the parameters of the channel model and its statistical behavior with the effect of dust and sand storms. The latter effects can be considered the main challenges these days, especially in middle-eastern countries. A 128 x 128 massive MIMO with URA (uniformly spaced rectangular antenna arrays) uniformly spaced has been considered in the simulation assessment with mm-wave channels operating at 28 GHz and 73GHz are examined by using NYUSIM (New York University Wireless Simulator) software. The simulation results show that the dust increases the attenuation and the path loss when working at higher frequencies compared to the clear weather conditions. Moreover, their effect can be reduced by adapting the transmitted power.
Publisher
Engineering and Technology Publishing
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献