Author:
Khudhair Saif A., ,Singh Mandeep Jit
Abstract
The meet of high demand of wireless communication is the topic of research in future wireless networks. This high demand comes from the increase use of mobile devices and sensors in the real environment. Internet of Things (IoT) and machine communication are types of technologies that increase the wireless communication demand. Because of this, there is a need of producing some techniques and technologies that are able to meet this requirement. Fifth Generation (5G) network is the futre promising wireless network that can be used to enhance a lot of performance metrics such as spectral and energy efficiencies, high capacity and low latency. Some technologies are used with 5G network; one of them is the use of short range communication using Millimeter waves (mmwave) frequency bands which gives high data rate and high bandwidth to be used in communication by using small cells of coverage. Massive Multiple-Input Multiple-Output (M-MIMO) is the technology used to meet the high capacity users in the network, It suffers from the high Inter-Carrier-Interference (ICI) due to the use of high number of antennas at the Base Station (BS). To mitigate this, the use of multicarrier waveforms is one of the techniques used in this paper. The use of Filter Bank Multi-Carrier (FBMC) is introduced here in terms of Bit Error Rate (BER) and throughput. The paper simulates the use of FBMC with high order basband QAM modulation (M-QAM) for two different mmwave frequency bands such as 28 GHz and 60 GHz with comparison with 2.6 GHz which is widely used nowadays. The simulation results show that there is less than 0.5 dB and 3 dB SNR difference between 2.6 GHz and 28 GHz and 60 GHz respectively. This indicates that 28 GHz can be used in outdoor communication instead of 2.6 GHz with high bandwidth, and 60 GHz can be used in indoor communication with extremely high bandwidth offering.
Publisher
Engineering and Technology Publishing
Subject
Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献