The Effect of Medium Inhomogeneity in Modeling Underwater Optical Wireless Communication

Author:

Sabril Safiy, ,Jasman Faezah,Hassan Wan Hafiza Wan,Mutalip Zaiton A.,Mohd-Mokhtar Rosmiwati,Hassan Zainuriah

Abstract

This paper introduces a stratified approach to modeling underwater optical wireless communication (UOWC). The influence of medium inhomogeneity, which many researchers ignore, was considered in modeling the UOWC channel to achieve an accurate model. The Monte Carlo technique to simulate the photon propagation was adapted to include medium inhomogeneity to estimate the received power, channel bandwidth, and delay spread of the proposed model. We use the depth-dependent chlorophyll profile that was established in Kameda empirical model to constitute the medium inhomogeneity. The empirical model used 0.5 mg m-3 and 2 mg m-3 of surface chlorophyll concentration to represent clear and coastal water. Besides, the comparison between collimated and diffused links was also studied to highlight the effect of the medium inhomogeneity on both links. Our findings indicate that the homogeneous model produces an underestimation result compared to the stratified model. The stratified model estimated significant increases in received power, lower delay spread, and higher bandwidth, which indicates the medium inhomogeneity is important for a realistic channel model.

Publisher

Engineering and Technology Publishing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3