Predicting Rectangular Patch Microstrip Antenna Dimension Using Machine Learning

Author:

Kurniawati Nazmia, ,Fahmi Arif,Alam Syah

Abstract

When designing a microstrip antenna, the designers determined the desired parameters. However, the simulation software can only give the parameters result based on the given dimension. Therefore, optimization is required to meet the desired parameters. The designers usually do the optimization by the trial-error process. This research conducts machine learning implementation to predict the microstrip antenna dimension. The study focused on rectangular patch microstrip antenna with resonant frequency ranged from 1-8 GHz. The dataset used to make the prediction is obtained from simulation with antenna width ranged from 19-63 mm and length 10-54 mm. There are four algorithms employed: decision tree, random forest, Support Vector Regression (SVR), and Artificial Neural Network (ANN). Among all algorithms, random forest with estimator 15 gives the best result with Mean Square Error (MSE) value is 3.45. From the obtained result, the researchers can estimate the rectangular patch microstrip antenna dimension based on the desired parameters, which can’t be done by the antenna simulation software before.

Publisher

Engineering and Technology Publishing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3