Measurement of Path Loss Characterization and Prediction Modeling for Swarm UAVs Air-to-Air Wireless Communication Systems

Author:

Duangsuwan Sarun,

Abstract

A challenge swarm unmanned aerial vehicles (swarm UAVs)-based wireless communication systems have been focused on channel modeling in various environments. In this paper, we present the characterized path loss air-to-air (A2A) channel modeling-based measurement and prediction model. The channel model was considered using A2A Two-Ray (A2AT-R) extended path loss modeling. The prediction model was considered using an artificial neural network (ANN) algorithm to train the measured dataset. To evaluate the measurement result, path loss models between the A2AT-R model and the prediction model are shown. We show that the prediction model using ANN is optimal to train the measured data for the A2A channel model. To discuss the result, the parametric prediction errors such as mean absolute error (MAE), root mean square error (RMSE), and R-square (R2), are performed.

Publisher

Engineering and Technology Publishing

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ray Tracing Based Flying Altitude Optimization for UAV Communications in Urban Environment;2024 11th International Conference on Wireless Communication and Sensor Networks (icWCSN);2024-04-12

2. Digital twin modeling of open category UAV radio communications: A case study;Computer Networks;2024-04

3. Wireless Street Lighting Network Optimization to Alleviate Plane Earth Loss;2023 9th International Conference on Computer and Communications (ICCC);2023-12-08

4. Real-Time Performance Evaluation Technology For Airborne Network;2023 9th International Conference on Computer and Communications (ICCC);2023-12-08

5. Prediction of Path Loss in Wireless Communication Networks based on Swarm Optimized Gradient Dual Layer Graph Neural Network;2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3