Author:
Liouane Oumaima, ,Femmam Smain,Bakir Toufik,Abdelali Abdessalem Ben
Abstract
Wireless Sensor Network (WSN) architectures are widely used in a variety of practical applications. In most cases of application, the event information transmitted by a sensor node via the network has no significance without the knowledge of its accurate geographical localization. In this paper, a method based on Machine Learning Technique (MLT) is proposed to improve node accuracy localization in WSN. We propose a Single Hidden Layer Extreme Learning Machine (SHL-ELM) and a Two Hidden Layer Extreme Learning Machine (THL-ELM) based methods for nodes localization in WSN. The suggested methods are applied in different Multi-hop WSN deployment cases. We focused on range-free localization algorithm in isotropic case and irregular environments. Simulation results demonstrate that the proposed THL-ELM algorithm greatly minimizes the average localization errors when compared to the Single Hidden Layer Extreme Learning Machine and the Distance Vector Hop (DV- Hop) algorithm.
Publisher
Engineering and Technology Publishing
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献