An Intelligent Arabic Model for Recruitment Fraud Detection Using Machine Learning

Author:

Sofy Mohamed A.,Khafagy Mohammed H.,Badry Rasha M.

Abstract

Over the last years, with the tremendous growth of digital transformation and the constant need for companies to hire employees, huge amounts of fraudulent jobs have been posted on the internet. A cleverly planned sort of scam aimed at job searchers for a variety of unprofessional purposes is a false job posting. It can lead to a loss of money and effort. An Arabic intelligent model has been built to avoid fraudulent jobs on the Internet using machine learning, data mining, and classification techniques. The proposed model is applied to the Arabic version of the EMSCAD dataset. It is available on the Internet in the English version and it has been retrieved from the use of a real-life system and consists of several features such as company profile, company logo, interview questions, and more features depending on job offer ads, Firstly, EMSCAD is translated into the Arabic language. Then, a set of different classifiers such as Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) was used to detect the fraudulent jobs. Finally, the results were compared to determine the best classifier used for detecting fraudulent jobs. The proposed model achieved better results when using a Random Forest classifier with 97% accuracy.

Publisher

Engineering and Technology Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Financial fraud detection through the application of machine learning techniques: a literature review;Humanities and Social Sciences Communications;2024-09-03

2. VaR Comparison for Fractal Diffusion System using R/S Method;2024 9th International Conference on Computer and Communication Systems (ICCCS);2024-04-19

3. Study of Methods for Constructing Intelligent Learning Models Supported by Artificial Intelligence;ICST Transactions on Scalable Information Systems;2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3