Identification of Leaf Disease Using Machine Learning Algorithm for Improving the Agricultural System

Author:

Kethineni Keerthi,Pradeepini G.

Abstract

Diagnosing plant disease is the foundation for effective and accurate plant disease prevention in a complicated environment. Smart farming is one of the fast-growing processes in the agricultural system, with the identification of disease in plants being a major one to help farmers. The processed data is saved in a database and used in making decisions in advance support, analysis of plants, and helps in crop planning. Plants are one of the essential resources for avoiding global warming. However, diseases such as blast, canker, black spot, brown spot, and bacterial leaf damage the plants. In this paper, image processing integration is developed to identify the type of disease and help automatically inspect all the leaf batches by storing the processed data. In some places, farmers are unaware of the experts and do not have proper facilities. In such conditions, one technique can be beneficial in keeping track and monitoring more crops. This technique makes it much easier and cheaper to detect disease. Machine learning can provide a method and algorithm to detect the disease. There should be training in images of all types of leaves, including healthy and disease leaf images. Five-stage detection processes are done in this paper. The stages are preprocessing, segmentation using k-Mean, feature extraction, features optimization using Firefly optimization Algorithm (FA), and classification using Support Vector Machine (SVM). The accuracy rate achieved using the proposed technique, i.e., GA-SVM is 91.3%, sensitivity is 90.72%, specificity 91.88, and precision is 92%. The results are evaluated using the matlab software tool.

Publisher

Engineering and Technology Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Augmented Rice Plant Disease Detection with Convolutional Neural Networks;INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi;2024-02-01

2. Efficient Mobile Deployment of Lightweight CNN-Transformer Model for Crop Disease Diagnosis in Smart Agriculture;2024 4th Asia Conference on Information Engineering (ACIE);2024-01-26

3. Target Detection Method Based on Unsupervised Domain Adaptation for Through-the-Wall Radar Imaging;2023 6th International Conference on Electronics Technology (ICET);2023-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3