Analytical Modeling of Radio Network Performance for 5G (Non-Standalone) and It’s Network Connectivity

Author:

Udoh Sylvester J., ,Srivastava Viranjay M.

Abstract

The traffic demand and prediction for the next decade would be mostly affiliated with the Internet of Things (IoT). Various challenges with mobile communication industry will be faced as the demand in high capacity, multi mobile devices (users) connected to the network, uplink power consumption on User Equipment (UE), and its effect on the life span of mobile phone. The major features of 5G as per user experience on the network are Ultra-Reliable Low Latency Communication (URLLC), Internet of Things (IoT), sustaining high rate Enhanced Mobile Broadband (eMBB), and connection density Massive Machine Type Communication (mMTC). This research work focuses on Non-Standalone (NSA) 5G New Radio (NR) early deployment on eMBB for achieving the required throughput. The 5G performance requirement is higher than 4G, which includes the capacity to support user experience downlink throughput with target value of 1 Gbps, millisecond-level of end-to-end latency, and high connection density of 1 million per square kilometer. Optimization is a vast topic, and this paper discusses the problems faced by users latching on 5G NSA network on the downlink and 4G Network on the uplink and suggests its solution.

Publisher

Engineering and Technology Publishing

Subject

Electrical and Electronic Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3