Abstract
Let $A$ be a unitary commutative Banach algebra with unit $e$. For $f\in A$ we denote by $\hat f$ the Gelfand transform of $f$ defined on $\hat A$, the set of maximal ideals of $A$. Let $(f_1,\dots,f_n)\in A^n$ be such that $\sum_{i=1}^n\|f_i\|^2 \leq 1$. We study here the existence of solutions $(g_1,\dots,g_n)\in A^n$ to the Bezout equation $f_1g_1+\cdots+f_ng_n=e$, whose norm is controlled by a function of $n$ and $\delta=\inf_{\chi\in\hat A}(|\hat f_1(\chi)|^2+\cdots+|\hat f_n(\chi)|^2)^{1/2}$. We treat this problem for the analytic Beurling algebras and their quotient by closed ideals. The general Banach algebras with compact Gelfand transform are also considered.
Publisher
Det Kgl. Bibliotek/Royal Danish Library
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献