Author:
Dey Souvik,Ghosh Dipankar
Abstract
We analyze whether Ulrich modules, not necessarily maximal CM (Cohen-Macaulay), can be used as test modules, which detect finite homological dimensions of modules. We prove that Ulrich modules over CM local rings have maximal complexity and curvature. Various new characterizations of local rings are provided in terms of Ulrich modules. We show that every Ulrich module of dimension $s$ over a local ring is $(s+1)$-Tor-rigid-test, but not $s$−Tor-rigid in general (where $s\ge 1$). Over a deformation of a CM local ring of minimal multiplicity, we also study Tor rigidity.
Publisher
Det Kgl. Bibliotek/Royal Danish Library
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献