Abstract
Let $\Omega\subset \mathbb{C}^{n}$ be a bounded $m$-hyperconvex domain, where $m$ is an integer such that $1\leq m\leq n$. Let $\mu$ be a positive Borel measure on $\Omega$. We show that if the complex Hessian equation $H_m (u) = \mu$ admits a (weak) subsolution in $\Omega$, then it admits a (weak) solution with a prescribed least maximal $m$-subharmonic majorant in $\Omega$.
Publisher
Det Kgl. Bibliotek/Royal Danish Library
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献