Author:
Echterhoff Siegfried,Quigg John
Abstract
Using the strong relation between coactions of a discrete group $G$ on $C^*$-algebras and Fell bundles over $G$ we prove a new version of Mansfield's imprimitivity theorem for coactions of discrete groups. Our imprimitivity theorem works for the universally defined full crossed products and arbitrary subgroups of $G$ as opposed to the usual theory of [16], [11] which uses the spatially defined reduced crossed products and normal subgroups of $G$. Moreover, our theorem factors through the usual one by passing to appropriate quotients. As applications we show that a Fell bundle over a discrete group is amenable in the sense of Exel [7] if and only if the double dual action is amenable in the sense that the maximal and reduced crossed products coincide. We also give a new characterization of induced coactions in terms of their dual actions.
Publisher
Det Kgl. Bibliotek/Royal Danish Library
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献