Abstract
Let $(\Omega, \Sigma, \mu)$ be a finite measure space, $1\le p<\infty$, $X$ be a Banach space $X$ and $B:X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p$-integrable with respect to $B$ whenever $\sup_{\|y\|=1} \int_\Omega \|B(f(w),y)\|^p\,d\mu<\infty$. We get an analogue to Hölder's inequality in this setting.
Publisher
Det Kgl. Bibliotek/Royal Danish Library
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fourier analysis with respect to bilinear maps;Acta Mathematica Sinica, English Series;2009-03-25
2. p-VARIATION OF VECTOR MEASURES WITH RESPECT TO BILINEAR MAPS;Bulletin of the Australian Mathematical Society;2008-12
3. A bilinear version of Orlicz–Pettis theorem;Journal of Mathematical Analysis and Applications;2008-12