Abstract
Let $p$ be a prime. We show that if a pro-$p$ group with at most $2$ defining relations has quadratic $\mathbb{F}_p$-cohomology algebra, then this algebra is universally Koszul. This proves the “Universal Koszulity Conjecture” formulated by J. Miná{č} et al. in the case of maximal pro-$p$ Galois groups of fields with at most $2$ defining relations.
Publisher
Det Kgl. Bibliotek/Royal Danish Library
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献