Author:
Guliyev Vagif S.,Hasanov Javanshir J.,Samko Stefan G.
Abstract
We consider generalized Morrey spaces ${\mathcal M}^{p(\cdot),\omega}(\Omega)$ with variable exponent $p(x)$ and a general function $\omega (x,r)$ defining the Morrey-type norm. In case of bounded sets $\Omega \subset {\mathsf R}^n$ we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev-Adams type ${\mathcal M}^{p(\cdot),\omega} (\Omega)\rightarrow {\mathcal M}^{q(\cdot),\omega} (\Omega)$-theorem for the potential operators $I^{\alpha(\cdot)}$, also of variable order. The conditions for the boundedness are given it terms of Zygmund-type integral inequalities on $\omega(x,r)$, which do not assume any assumption on monotonicity of $\omega(x,r)$ in $r$.
Publisher
Det Kgl. Bibliotek/Royal Danish Library
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献