Author:
Archbold Robert J.,Kaniuth Eberhard
Abstract
If $G$ is an almost connected, nilpotent, locally compact group then the real rank of the $C^\ast$-algebra $C^\ast (G)$ is given by $\operatorname {RR} (C^\ast (G)) = \operatorname {rank} (G/[G,G]) = \operatorname {rank} (G_0/[G_0,G_0])$, where $G_0$ is the connected component of the identity element. In particular, for the continuous Heisenberg group $G_3$, $\operatorname {RR} C^\ast (G_3))=2$.
Publisher
Det Kgl. Bibliotek/Royal Danish Library
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献