Author:
Alestalo P.,Trotsenko D. A.
Abstract
We give a geometric characterization for a plane set $A\subset {\mathsf R}^2$ to have the following linear bilipschitz extension property: For $0\le \varepsilon \le \delta$, every $(1 + \varepsilon)$-bilipschitz map $f\colon A\to {\mathsf R}^2$ has a $(1 + C\varepsilon)$-bilipschitz extension to the whole plane ${\mathsf R}^2$.
Publisher
Det Kgl. Bibliotek/Royal Danish Library
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimal extension of Lipschitz embeddings in the plane;Bulletin of the London Mathematical Society;2019-05-03
2. Extension Results for Lipschitz Mappings;Lecture Notes in Mathematics;2019
3. Nonlinear dimension reduction via outer Bi-Lipschitz extensions;Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing;2018-06-20
4. Isometric Approximation in Bounded Sets and Its Applications;Developments in Functional Equations and Related Topics;2017
5. Sharp distortion growth for bilipschitz extension of planar maps;Conformal Geometry and Dynamics of the American Mathematical Society;2012-04-18