Effect of Temperature and Magnetic Dopants on Particle size and Electrical Properties of ZnO Ceramic Varistor

Author:

Abstract

We report here structural and electrical properties of Zn0.95 M0.05O ceramic, M = Zn, Co and Mn. It is found that addition of magnetic doping did not influence the hexagonal wurtzite structure of ZnO. Furthermore, the lattice parameters ratio c/a for hexagonal distortion and the length of the bond parallel u to the c axis were nearly unaffected. The average crystalline diameters, deduced from XRD analysis are 83.75, 72.86 and 70.97 nm for Zn, Mn and Co, which are 15 times lower than those obtained from FESEM micrographs (1570, 1380 and 1150 nm). The breakdown field EB was decreased as the temperature increased, in the following order: Mn> Zn > Co. The nonlinear region was observed for all samples as the temperature increased up to 400 K and completely disappeared with further increase of temperature up to 500 K. The values of nonlinear coefficient, α were between 1.65 and 56 for all samples, in the following order: Mn> Zn > Co. Moreover, the electrical conductivity σ was gradually increased as the temperature increased up to 500 K, in the following order: Co > Zn > Mn. On the other hand, the activation energies were 0.194, 0.155 eV and 0.231 eV for all samples, in the following order Mn, Zn and Co. These results have been discussed in terms of valence states, magnetic moment and thermo-ionic emission which were produced by the doping, and controlling the potential barrier of ZnO.

Publisher

Opast Group LLC

Reference68 articles.

1. 1. Joshy Jose, Abdul Khaddar M (2001) Mater SciEng A 810:

2. 304-306

3. 2. Look D C (2001) Mater SciEng B 80: 383.

4. 3. LianGao, Qiang Li , Weiling Luan, HirokazuKawaoka,

5. TohruSekino, et al. (2002) JAm Ceram Soc 85: 1016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3