The Role of Machine Learning and Data Mining Techniques in Predicting Students’ Academic Performance

Author:

Rufai Dr. Aliyu Y.,Suru Dr.Hassan U.,Afrifa James

Abstract

The advancement in Information Technology makes it easier and cheaper to collect large amounts of data, but if this data is not further analyzed, it remains only huge amounts of data. These large amounts of data set have motivated research and development in various fields to extract meaningful information with a view of analyzing it to solve complex problem. With new methods and techniques, data can be analyze and be of great advantage. Data mining and machine learning are two computing disciplines that enable analysis of large data sets using different techniques. This paper gave an overview of several applications using these disciplines in education, with focus on student’s academic performance prediction. Early prediction of students’ performance is useful in taking early action of improving learning outcome. The perfect methods for this are machine learning and data mining. This paper also discusses special use of data mining in education, called educational data mining. Educational Data Mining (EDM) uses different methods and techniques from machine learning, statistics, data mining and data analysis, to analyze data collected during teaching and learning. The goal of this paper is to introduce the role of machine learning and data mining in predicting student’s academic performance and to present its applications and benefits

Publisher

Association of Technology and Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monitoring System of College Teaching Quality Based on Data Mining;2022 International Conference on Education, Network and Information Technology (ICENIT);2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3