Superconducting Electromagnetic Launch Machine System for Aerospace Applications

Author:

Vijayapakavan P1,Robinson Smart D.S1,Ramu Kurinjimalar2,Ramachandran M2

Affiliation:

1. Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India

2. REST Labs, Kaveripattinam, Krishnagiri, TamilNadu, India.

Abstract

The aerospace industry is constantly experimenting with innovative technologies to improve efficiency, effectiveness and sustainability. The use of superconducting machines emerged as a promising solution to address the growing demands of Aerospace applications. Superconducting machines offer significant advantages such as higher power density, reduced weight and improved efficiency compared to conventional electrical machines. However, efficient cooling methods are critical to maintain superconducting materials at low-temperature operating conditions. This abstract provides a comprehensive overview of superconducting machines and their associated cooling systems designed for space applications. A superconducting machine uses high-temperature superconductors to achieve near-zero electrical resistance, enabling high currents to be transmitted with low energy losses. This feature allows development of lightweight and compact electric propulsion systems contribute to improved fuel efficiency and extended mission capabilities in space vehicles. A cooling system is an important component of a superconducting machine because it ensures that the superconducting materials remain below their critical temperature. Various cooling techniques are being explored, including cryogenic cooling, liquid nitrogen cooling, and cryocoolers. These cooling systems effectively extract the heat generated during engine operation, maintaining the superconducting components in their superconducting state.

Publisher

REST Publisher

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3