Provisional Diagnosis and Prognosis of Burn Skin Using Convolutional Neural Network

Author:

Abstract

This paper explores the use of a convolutional neural network (CNN) in burn skin diagnosis and prognosis. Leveraging a variety of labelled medical images, the model integrates to acquire comprehensive features. By enhancing diagnostic and prognostic accuracy, the model aims to boost the outcomes of dermatological care. When compared to conventional techniques, the CNN performs better for provisional diagnosis, obtaining high accuracy in classifying burn severity. By estimating possible outcomes based on the original evaluation, the model is further expanded to offer a prediction of the healing process. In relation to treatment plans and long-term patient care, this expertise allows plastic surgeons to make informed decisions. Considering consideration of different clinical settings and patient demographics, we assess the suggested method on an extensive dataset of burn skin photos. The outcomes demonstrate that the CNN can diagnose and predict burn skin damage. Our results imply that using advanced deep learning methods in the plastic surgery workflow can greatly improve the accuracy and effectiveness of burn-related analyses.

Publisher

REST Publisher

Reference15 articles.

1. Machine Learning Demonstrates High Accuracy for Disease Diagnosis and Prognosis in Plastic Surgery Angelos Mantelakis t al. Plast Reconstr Surg Glob Open. 2021.Free PMC article Hide details Plast Reconstr Surg GlobOpen.2021Jun24;9(6): e3638.doi:10.1097/GOX.0000000000003638. Collection 2021 Jun. Authors Angelos Mantelakis 1, Yannis Assael 2, Parviz Sorooshian3, Ankur Khajuria 4 Affiliations1Department of Surgery and Cancer, Imperial College London, UK.2University of Oxford, UK.3Queen Victoria Hospital, UK.4Kellogg College, University of Oxford.PMID: 34235035PMCID:PMC8225366DOI:10.1097/GOX.00000000000036 3.

2. Chapter: Chapter 10 Local plastic surgery-based face recognition using convolutional neural networks Book: Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics Author: Roshni Khedgaonkar, Kavita Singh, Mukesh Raghuwanshi Publisher: Elsevier Date: 2021 https://doi.org/10.1016/B978-0-12 821633-0.00001-5.

3. Applications of Machine Learning in Facial Cosmetic Surgeries: A Scoping Review 2023 Aug;47(4):1377-1393 doi: 10.1007/s00266-023-03379-y Epub 2023 Jun Authors Nima Ahmadi 1 2, Maral Niazmand 1 2, Ali Ghasemi 1 2, Sadra Mohaghegh 1 2, Saeed Reza Motamedian 3.

4. A Narrative Review of Artificial Intelligence (AI) for Objective Assessment of Aesthetic Endpoints in Plastic Surgery 2023 Mar 31doi: 10.1007/s00266-023-03328

5. Applications of Artificial Intelligence, Machine Learning, and Deep Learning on Facial Plastic Surgeries. In: Cosmetic and Reconstructive Facial Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-31168-0_9 Published 27 June 2023.Published online 2021 Jun 24. Doi: 10.1097/GOX.0000000000003638 PMCID: PMC8225366PMID: 34235035.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3