Evaluation of Artificial Neural Network, using Evaluation based on Distance from Average Solution

Author:

Abstract

Computer systems based on artificial neural networks, often known as neural networks or neural nets, are modeled after the organic neural networks seen in animal brains. Artificial neurons are a group of interconnected units or nodes that serve as the foundation of an ANN and are meant to approximate the function of biological brain neurons. This article contains a survey of practical uses for neural networks. It offers a taxonomy of Artificial Neural Networks (ANNs), in-forms the reader of recent and upcoming developments in ANN applications research, and highlights research areas of interest. This paper also discusses the difficulties, contributions, comparative effectiveness, and important methodologies in ANN applications. The study examines a wide range of ANN applications in numerous disciplines, including computing, science, engineering, medicine, the environment, agriculture, mining, technology, climate, business, and the arts similar to nanotechnology. This study analyses performance assesses ANN contributions and criticizes techniques. The study discovered that artificial neural networks with feedforward and feedback propagation do well when applied to solving human problems. Therefore, based on data analysis characteristics such as accuracy, processing speed, latency, fault tolerance, volume, scalability, convergence, and efficiency, we presented feed-forward and feedback propagation ANN models for research centers. A computational model known as an artificial neural network (ANN) is composed of many processing elements that accept inputs and produce outputs by their specified activation functions. This article will make other articles in this computer magazine easier to grasp for those who know little or nothing about ANNs. We go over the reasons for creating ANNs, the fundamentals of a biological neuron and an artificial computer model, network designs, learning mechanisms, and some of the most widely used ANN models. A successful ANN character recognition application brings us to a close. EDAS Evaluation Based on Distance from Average Solution method for Notebook(n1), Notebook(n2), Notebook(n3), Notebook(n4), Notebook(n5). Notebook (n1), Notebook (n2), Notebook (n3), Notebook (n4), Notebook (n5). Speed (MHz), RAM (Mbytes), Display (inches), Price (Euro). Notebook (n5) has the highest rank whereas Notebook (n1) has the lowest rank. The need for hybrid systems, Optical Neural Networks, EDAS Method.

Publisher

REST Publisher

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3