Human Activity Recognition Using CNN-LSTM

Author:

Sharma Atul1,Singh Kirti1,Bisht Rahul1

Affiliation:

1. Dev Bhoomi Uttara hand University, Dehradun, Uttara hand, India

Abstract

Human Activity Recognition (HAR) is a crucial task in numerous applications, including healthcare, smart homes, security, and fitness tracking. This study explores the effectiveness of Long Short-Term Memory (LSTM) networks in accurately recognizing and classifying human activities from sensor data. Leveraging the ability of LSTM to capture temporal dependencies and long-term patterns, we employ a deep learning approach that processes sequential data collected from accelerometers and gyroscopes. Our proposed model demonstrates significant improvements in recognition accuracy. We validate the performance of our approach on benchmark datasets, achieving an accuracy of over 95%. The findings underscore the potential of LSTM networks in advancing HAR systems, offering reliable and precise activity classification that can be integrated into various real-world applications.

Publisher

REST Publisher

Reference21 articles.

1. Miller, J., & Taylor, A. (2024). Advancements in HAR Using Deep Learning Techniques. Journal of Artificial Intelligence Research, 57(3), 123-145.

2. Choudhury, R., & Singh, K. (2024). A Comprehensive Survey on Sensor-Based Human Activity Recognition. IEEE Transactions on Knowledge and Data Engineering, 36(5), 789-808.

3. Lopez, M., & Evans, S. (2024). Transfer Learning for HAR: A Review and Comparative Analysis. Pattern Recognition Letters, 145, 67-79.

4. Patel, R., & Gupta, V. (2024). Multi-Modal HAR Using Sensor Fusion and Deep Learning. Sensors, 24(1), 233-256.

5. Liu, Y., & Wang, L. (2024). Real-Time HAR Using Wearable Devices and LSTM Networks. IEEE Internet of Things Journal, 11(2), 349-366.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3