An Enhanced Fast – High Utility Item set Mining Method for Large Datasets

Author:

Abstract

High Utility Itemset mining is considered one of the critical and challenging problems in data mining. The existing mining framework is limited to analyzing occurrence counts of items in the Database. However, this framework applies a single minimum utility threshold value that fails to consider different item characteristics. Recent methods of association mining focused on finding the high utility itemsets instead of frequent itemsets generations. Some utility-based mining methods that is Faster High Utility Itemset Mining (FHM), High Utility Itemset Miner (HUI-Miner), Direct Discovery of High Utility Patterns (D2HUP), Utility Pattern Growth (UP Growth & UP Growth+) are studied for the generation of high utility itemsets generations. Existing HUI mining methods are effectively generating HUIs. However, developing a faster and memory-efficient HUI mining method is required. For this purpose, this work develops an Enhanced Fast - High Utility Itemset Mining (EF-HUIM) method for the faster generation of high utility itemsets and respective association rules.

Publisher

REST Publisher

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3