Theoretical Aspects on Heat Transfer and Fluid Flow in Micro Channels

Author:

Mane Shreya1

Affiliation:

1. Astroex Research Association, Deoria, Uttar Pradesh, India

Abstract

The past ten years have seen a lot of research on the issues of heat transfer and fluid flow in micro-channels. With an emphasis on upcoming research requirements, a critical analysis of the state of research as it stands is offered. Following a brief introduction, the study discusses six themes related to transport phenomena in micro-channels: condensation, cooling of electronics, single-phase gas flow, augmentation of single-phase liquid flow and flow boiling, and micro-scale heat exchangers. In this study, we investigate the three-dimensional heat transfer and water flow properties in a set of rectangular micro-channel heat sinks for advanced electronic systems. Over the past ten years, mini/micro channel type compact heat exchangers have received a lot of attention. The ability to make heat exchangers smaller, lighter, and cheaper than those in use now is the primary motivator. Additionally, emerging applications that call for the cooling of small things, such electronics and micro-electro-mechanical devices, need for heat exchangers with tiny channels. Theoretically, it is examined how a nanofluid moves and transfers heat through a horizontal micro channel while being affected by a magnetic field and an electric double layer (EDL). The flow problem for a micro channel with a large aspect ratio is handled as a two-dimensional nonlinear system. The magnetic field and EDL body force are taken into account while calculating momentum equation

Publisher

REST Publisher

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3