Evaluation of time constant, dead space and compliance to determine PEEP in COVID-19 ARDS: a prospective observational study

Author:

Abstract

Multiple variables exist to identify optimal positive end-expiratory pressure (PEEP) to keep alveolar recruitment in acute respiratory distress syndrome (ARDS). These include increased respiratory system compliance (CRS ) and decreased dead space to tidal volume fraction (Vd/Vt). Increasing CRS reflects improved lung volume, whereas decreasing Vd/Vt reflects improved ventilation/perfusion matching. An increasing expiratory time constant (RCEXP ) reflects both, changes in CRS and alterations in tissue resistance. Whether RCEXP might reflect corresponding changes in Vd/Vt better than CRS during alveolar recruitment is unknown. This prospective observational study examined the correlation between these variables during ascending PEEP titration in patients with novel Coronavirus disease (COVID-19) related ARDS. PEEP titrations were performed in ten patients with COVID-19 ARDS under passive, pressure-controlled ventilation with a fixed driving pressure of 14 cmH2O. PEEP was increased stepwise between 5 and 20 cmH2O with 2 minutes allowed for Vd/Vt equilibration. RCEXP , Vd/Vt and CRS were recorded at each PEEP level and statistically assessed.The overall correlation between Vd/Vt and RCEXP was −0.72 (95% CI: −0.57 to −0.82); p < 0.0001. CRS had a weaker correlation with Vd/Vt (−0.47 (95% CI: −0.25 to −0.64); p < 0.0001). RCEXP was the highest at 12 cmH2O of PEEP whereas Vd/Vt was the lowest at 10 cmH2O of PEEP and CRS was the highest at PEEP of 15 cmH2O.Both parameters of exhalation, Vd/Vt and RCEXP, are strongly correlated which likely reflects corresponding mechanical and global ventilation/perfusion responses during ascending PEEP titration.

Publisher

MRE Press

Subject

General Medicine,General Materials Science,Aerospace Engineering,Industrial and Manufacturing Engineering,General Earth and Planetary Sciences,General Environmental Science,General Computer Science,General Medicine,General Arts and Humanities,General Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3