Isoflurane ameliorates oxygen-glucose deprivation-induced cardiomyocyte injury through SIRT6/DNMT1 pathway

Author:

Abstract

The incidence of cardiovascular diseases is on the rise in the world, which poses a significant threat to human health. Myocardial ischemia can cause heart disease. Therefore, it is necessary to avoid myocardial hypoxia/reoxygenation (H/R) injury to attenuate the risk of heart disease. The present study focuses on the protective effect of isoflurane on H/R-induced cell injury through the Sirtuin 6 (SIRT6)/DNA (cytosine-5)-methyltransferase 1 (DNMT1) pathway. Quantitative reverse transcription PCR (RT‑qPCR) and Western blot analysis were used to measure protein levels and mRNA expression in H9c2 cells. Cell Counting Kit‑8 assays (CCK8 assay) was used to determine cell viability. The expression levels of pro-inflammatory molecule were assessed using commercial Enzyme-linked immunosorbent assay (ELISA) Kits. The ratio of cellular apoptosis was determined by flow cytometry. The contents of Lactate dehydrogenase (LDH), Cardiac Troponin I (cTnI), and Creatine Kinase MB (CK-MB) were detected using colorimetric assays. This study shows that Isoflurane reduces the expression of DNMT1 by activating SIRT6 in oxygen-glucose deprivation (OGD)-induced H/R injury. The damage of cardiomyocyte was decreased after Isoflurane treatment under OGD exposure condition. In addition, Isoflurane ameliorates OGD-induced inflammatory responses and cellular apoptosis in H9c2 cell via interaction with the SIRT6/DNMT1 pathway. Taken together, this study suggested the protective effect of Isoflurane on the process of OGD-induced damage and provided a new mechanism of action for Isoflurane in the treatment of H/R-induced cardiomyocyte injury.

Publisher

MRE Press

Subject

History,History and Philosophy of Science,Multidisciplinary,Social Sciences (miscellaneous),Geography, Planning and Development,Marketing,Strategy and Management,Industrial relations,Business and International Management,Business, Management and Accounting (miscellaneous),Management of Technology and Innovation,Management Science and Operations Research,Information Systems and Management,Organizational Behavior and Human Resource Management,Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics,Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science,Computer Science Applications,General Mathematics,Software,Political Science and International Relations,Sociology and Political Science,Mechanical Engineering,Mechanics of Materials,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3