Hydroxyethyl starch impairs renal water reabsorption in patients with cardiac shock

Author:

Abstract

Hydroxyethyl starch (HES) has been shown to be correlated with increased risk of renal dysfunction. While almost all articles focus on the side effect of HES on glomerular filtration function, it is barely known to us about the effect of HES on renal water reabsorption. The objective of this study is to assess the effect of HES on renal water reabsorption in patients with cardiac shock. In a retrospective cohort-study, 162 patients admitted to the department of cardiology and diagnosed as cardiac shock were randomized into four groups, depending on different treatments of NaCl (NaCl group), HES (HES group), HES and dopamine (HES + DOP group), HES and norepinephrine (HES + NE group). Data collected included age, sex, blood pressure, heart rate, left ventricular ejection fraction, serum creatinine, blood urea nitrogen, urine specific gravity, urine volume, oxygen saturation serum, drug dosage, and so on. Indices related to renal function were recorded before and after the anti-shock treatments. The comparison was performed among four groups at day 0 or at day 3, and indices of the same group were compared between day 0 and day 3. We found that HES and norepinephrine reduced the urine specific gravity in HES group (day 0 vs day 3, 1.019± 0.006 vs 1.012 ± 0.005, p < 0.001) and in HES + NE group (day 0 vs day 3, 1.019 ± 0.006 vs 1.011 ± 0.004, p < 0.001). Dopamine increased the urine volume of HES-treated patients at day 3 (p < 0.001), and in the meantime dopamine preserved urine specific gravity during anti-shock treatment at day 3 (p = 0.13). In conclusion, hydroxyethyl starch caused injured function of renal water reabsorption, and dopamine protected renal water reabsorption in HES-treated patients via increased renal blood.

Publisher

MRE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3