Mathematical models applied to the prediction of doping in male athletes

Author:

Abstract

The compartmental model is a mathematical model (usually described by a set of differential equations) that describes how individuals from different compartments (or groups) that represent a population, interacts. The model is suitable especially for epidemic model, modeling spread of disease but also in simulation of interaction among social groups. The compartmental model has few assumptions to be feasible: “the infection/contamination rate” can be a function of many parameters (seasonality, epidemic waves, dependence of social distancing, policy of awareness, policy, and so one). The main assumption is that the population is homogeneous but, in reality, the heterogeneity of population (spatial localization, seasonal, demography) plays an important role in accuracy of models. Our approach was based on another method that has been used in the last years, the inclusion of a temporal function including heterogeneity in the influence that conduct to doping similar to rate of infection from epidemic models. In this paper, a new model is proposed for quantitative analysis of doping in a particular selected sport. Almost all the models in doping use the biological markers and effect of doping in declared by athletes involved in use of banned substances in a quantitative analysis over a group of high-performance athletes. The proposed compartmental model SEDRS (Susceptible-Exposed-Doped-Recovered-Susceptible) includes the heterogeneity shaped by awareness, due to social interaction that transmit the anti-doping policy. These measures are patterned by social interaction, especially during competitions and training, and this approach is included in system of integrodifferential equations. A heterogeneous (SEDRS) model is numerically solved and the solutions show how the social factor can contribute to decay of doping phenomenon of male athletes and the quantifiable influence in a healthier atmosphere in sport. The scope of the paper is the prediction of doping cases based on SEDRS model.

Publisher

MRE Press

Subject

Urology,General Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3