Development of a real-time monitoring and detection indoor air quality system for intensive care unit and emergency department

Author:

Abstract

To develop an Indoor Air Quality (IAQ) monitoring and detecting system based on a new Internet of Thing (IoT) sensory technology device that incorporated nine recommended indoor pollutants by the academic literature and reliable organizations, such as World Health Organization (WHO), Environmental Protection Agency (EPA), and International Organization for Standardization (ISO). The pollutants include Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Dioxide (NO2), Ozone (O3), Formaldehyde (HCHO), Volatile Organic Compounds (VOC), Particulate Matter 2.5 (PM2.5) as well as air humidity and temperature that are used to assess the variety of indoor pollutants and provide a new IAQ pollutants dataset. Besides, the newly developed system provides real-time air quality monitoring, reports the pollutants’ data to a cloud platform (i.e., ThingSpeak), and can trigger early warnings as a service when abnormalities occurred in the air quality index. The system was tested to ensure its conformance to the recommended pollutants by collaborating with surgeons and specializing in IAQ in a hospital surgical intensive care unit (SICU), emergency department (ED), and in the women’s ward, which accommodate patients who are either newly born mothers (in case they need that) or who have had an operation, as well as pregnant patients who need to stay in the hospital to be under the supervision of medical care. Nine pollutants were identified and collected the pollutants dataset and their thresholds that affect the air quality within the hospital facilities and services (SICU, ED) to be used for assessing the effectiveness of the amount, concentration, and diversity of the pollutants. In the SICU, the concentrations of some pollutants were high in the beginning due to the residues of the previous surgery and because of the frequent use of sterilizers to clean and prepare the surgery room. Then, the concentrations of pollutants were moderate, but minutes after the start of the surgical, an increase in CO2 and formaldehyde was observed, which exceeds the threshold limit because of the use of anesthetic gas and sterilization. In the women’s ward, was all concentrations generally moderate except for particles matter PM2.5, and the same context with the 3rd installed location in the pharmacy of ED, most concentrations were moderate, except formaldehyde which exceeded the threshold. “CO” was the highest positive correlated and strongly correlated to “NO2” and that was expected because CO influences the oxidation of NO to NO2. On the contrary, the “CO” had the highest negative correlation with “VOC”, and the “NO2” had the highest negative correlation with “VOC”, chemistry is part of the responsibility for the weak correlation observed between the pollutants.

Publisher

MRE Press

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing and monitoring air quality in cities and urban areas with a portable, modular and low-cost sensor station: calibration challenges;International Journal of Remote Sensing;2024-07-30

2. IoT-Powered Solution for Proactive Air Quality Management;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

3. Remote mobile health monitoring frameworks and mobile applications: Taxonomy, open challenges, motivation, and recommendations;Engineering Applications of Artificial Intelligence;2024-07

4. A Systematic, Cross-Model Evaluation of Ensemble Light Scattering Sensors;Aerosol and Air Quality Research;2024

5. WSN and IoT-Based Real-Time Indoor Air Quality Monitoring System for Hospital Facilities;2023 IEEE 9th World Forum on Internet of Things (WF-IoT);2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3