Artificial intelligence for the triage of COVID-19 patients at the emergency department: a systematic review

Author:

Abstract

The aim of this article is to systematically analyze the available literature on the efficacy and validity of artificial intelligence (AI) applied to medical imaging techniques in the triage of patients with suspected or confirmed coronavirus disease 2019 (COVID-19) in Emergency Departments (EDs). A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted. Medline, Web of Science, and Scopus were searched to identify observational studies evaluating the efficacy of AI methods in the diagnosis and prognosis of COVID-19 using medical imaging. The main characteristics of the selected studies were extracted by two independent researchers and were formally assessed in terms of methodological quality using the Newcastle-Ottawa scale. A total of 11 studies, including 14,499 patients, met inclusion criteria. The quality of the studies was medium to high. Overall, the diagnostic yield of the AI techniques compared to a gold standard was high, with sensitivity and specificity values ranging from 79% to 98% and from 70%to 93%, respectively. The methodological approaches and imaging datasets were highly heterogeneous among studies. In conclusion, AI methods significantly boost the diagnostic yield of medical imaging in the triage of COVID-19 patients in the ED. However, there are significant limitations that should be overcome in future studies, particularly regarding the heterogeneity and limited amount of available data to train AI models.

Publisher

MRE Press

Subject

Animal Science and Zoology,Food Animals,Orthopedics and Sports Medicine,Physiology,General Psychology,General Medicine,General Medicine,General Medicine,Plant Science,Cardiology and Cardiovascular Medicine,General Chemical Engineering,Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3