Isotopic exchange of oxygen, sulfur, hydrogen and copper between aqueous phase and the copper minerals brochantite, libethenite and olivenite

Author:

Majzlan JurajORCID,Mathur Ryan,Milovský Rastislav,Milovská Stanislava

Abstract

Abstract Fractionation factors for the isotopes of O, H, S, or Cu (as appropriate) were determined for the minerals brochantite [Cu4(SO4)(OH)6], libethenite [Cu2(PO4)(OH)] and olivenite [Cu2(AsO4)(OH)] and corresponding aqueous solutions at temperatures between 30 and 70°C. All samples used for this determination were synthetic and the degree of fractionation was expressed as 1000 ln α = (A × 106/T2) + B, where A and B are empirical parameters. A few natural libethenite samples from its type locality Ľubietová-Podlipa were also analysed and compared to the prediction based on the isotopic composition of meteoric water and our fractionation factors. The hydrogen fractionation factors agreed with the prediction well, whereas those for oxygen did not. A possible explanation is the disequilibrium of aqueous phosphate (and also arsenate) species and the solution in our experiments or the interaction of meteoric fluids with the isotopically heavy (in terms of oxygen) country rocks. Because the effects of isotopic disequilibrium in our experiments cannot be ruled out, the oxygen fractionation factors should be used with caution. The determined fractionation factors can be used as an isotope geothermometer, given that it can be proven that the phases of interest precipitated from the same fluid in equilibrium. Libethenite is predicted to have slightly lower δ65Cu values than its parental solution, but brochantite slightly higher δ65Cu values than its parental solution. Simple forward models, simulating neutralisation or reduction of mine drainage, show that precipitation of these minerals and removal of the co-existing fluid, could cause isotopic variations (in δ65Cu) on the order of 1‰ or more.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3