Cr-pyrope xenocrysts with oxide mineral inclusions from the Chompolo lamprophyres (Aldan shield): Insights into mantle processes beneath the southeastern Siberian craton

Author:

Rezvukhin Dmitriy I.ORCID,Nikolenko Evgeny I.ORCID,Sharygin Igor S.ORCID,Rezvukhina Olga V.ORCID,Chervyakovskaya Maria V.ORCID,Korsakov Andrey V.ORCID

Abstract

AbstractPyrope xenocrysts (N = 52) with associated inclusions of Ti- and/or Cr-rich oxide minerals from the Aldanskaya dyke and Ogonek diatreme (Chompolo field, southeastern Siberian craton) have been investigated. The majority of xenocrysts are of lherzolitic paragenesis and have concave-upwards (normal) rare earth element (REEN) patterns that increase in concentration from light REE to medium–heavy REE (Group 1). Four Ca-rich (5.7–7.4 wt.% CaO) pyropes are extremely low in Ti, Na and Y and have sinusoidal REEN spectra, thus exhibiting distinct geochemical signatures (Group 2). A peculiar xenocryst, s165, is the only sample to show harzburgitic derivation, whilst demonstrating a normal-to-weakly sinusoidal REEN pattern and the highest Zr (93 ppm) and Sc (471 ppm). Chromite–magnesiochromite, rutile, Mg-ilmenite and crichtonite-group minerals comprise a suite of oxide mineral inclusions in the pyrope xenocrysts. These minerals are characteristically enriched in Cr with 0.6–7.2 wt.% Cr2O3 in rutile, 0.7–3.6 wt.% in Mg-ilmenite and 7.1–18.0 wt.% in the crichtonite-group minerals. Complex titanates of the crichtonite group enriched in large ion lithophile elements (LILE) are high in Al2O3 (0.9–2.2 wt.%), ZrO2 (1.5–5.4 wt.%) and display a trend of compositions from the Ca–Sr-specific varieties to the Ba-dominant species (e.g. lindsleyite). In the pyrope xenocrysts the oxides coexist with silicates (clino- and orthopyroxene and olivine), hydrous silicates (talc, phlogopite and amphibole), carbonate (magnesite), sulfides (pentlandite, chalcopyrite, breakdown products of monosulfide and bornite solid solutions), apatite and graphite. PT estimates imply the inclusion-bearing pyrope xenocrysts have been derived from low-temperature peridotite assemblages that resided at temperatures of ~600–800°C and a pressure range of ~25–35 kbar in the graphite stability field. Pyrope genesis is linked to the metasomatic enrichment of peridotite protoliths by Ca–Zr–LILE-bearing percolating fluid–melt phases containing significant volatile components. These metasomatic agents are probably volatile-rich melts or supercritical C–O–H–S fluids that were released from a Palaeo-subduction slab.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3