In situ trace elements and S isotope systematics for growth zoning in sphalerite from MVT deposits: A case study of Nayongzhi, South China

Author:

Wei Chen,Ye Lin,Huang Zhilong,Hu Yusi,Wang Haoyu

Abstract

AbstractZoning texture in sphalerite has been described in many studies, although its genesis and ore formation process are poorly constrained. In this investigation, we compare the in situ trace element and isotopic composition of colour-zoned sphalerites from Nayongzhi, South China, to explain the zoning growth process. Petrographic observations identified two broad types of zoned sphalerite, core–rim (CR) and core–mantle–rim (CMR) textures. Each zoned sphalerite displays two or three colour zones, including brown core, light colour bands and/or pale-yellow zones. In situ laser ablation inductively coupled plasma mass spectrometry trace-element analyses show that the three colour zones display variable trace-element compositions. Brown cores exhibit distinctly high Mn, Fe, Co, Ge, Tl and Pb concentrations, whereas pale-yellow and light colour zones have elevated Ga, Cd, Sn, In and Sb concentrations. Copper, Sb, In and Sn show slight variations between pale-yellow and light zones, the latter having higher In and Sn, but lower Cu and Sb abundances. Given the low concentration range of Pb, Ge, Tl, Mn Sb, Cd, etc., the colour of sphalerite is attributed mainly to Fe compositional variation. The δ34S values of sphalerite from Nayongzhi range from +22.3 to +27.9‰, suggesting reduced sulfur was generated by thermochemical sulfate reduction of marine sulfate in ore-hosted strata. Single-crystal colour-zoned sphalerite exhibits intracrystalline δ34S variation (up to 4.3‰), which is attributed to the δ34S composition of H2S in the original fluid. The lack of correlation between trace elements and δ34S values indicates episodic ore solution influxes and mixes with the reduced sulfur-rich fluid derived from the aquifers of the ore-hosted strata, which play a key role in the formation of the zoned Nayongzhi sphalerite. In conclusion, in situ trace element and S isotope studies of zoned sphalerite crystals might provide insight into the ore-forming process of MVT deposits.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3