The crystal structure of charmarite – the first case of a 11 × 11 Å superstructure mesh in layered double hydroxides

Author:

Zhitova Elena S.ORCID,Zolotarev Andrey A.,Kasatkin Anatoly V.ORCID,Sheveleva Rezeda M.ORCID,Krivovichev Sergey V.,Pekov Igor V.,Bocharov Vladimir N.

Abstract

AbstractCharmarite, Mn4Al2(OH)12CO3⋅3H2O, is a hydrotalcite supergroup member (or layered double hydroxide, LDH) with a previously unknown crystal structure and a Mn2+-analogue of quintinite (commonly erroneously reported as ‘2:1 hydrotalcite’). The single-crystal X-ray diffraction (XRD) data were obtained from the specimen from Mont Saint-Hilaire, Québec, Canada and are best processed in the space group P$\bar{3}$, a = 10.9630(4), c = 15.0732(5) Å and V = 1568.89(12) Å3. The crystal structure has been solved by direct methods and refined to R1 = 0.0750 for 3801 unique reflections with Fo > 2σ(Fo). The charmarite structure has long-range periodicity in the xy plane due to $2\sqrt 3$a’ × $2\sqrt 3$a’ scheme (or 11 × 11 Å) determined for LDHs for the first time (where a’ is a subcell parameter ≈ 3.2 Å). This periodicity is produced by the combination of two superstructures formed by: (1) Mn2+ and Al3+ ordering in the metal-hydroxide layers [Mn4Al2(OH)12]2+ according to the $\sqrt 3$a’ × $\sqrt 3$a’ pattern and (2) the (CO3)2– ordering according to the 2a’ × 2a’ pattern in the [CO3(H2O)3]2– interlayer sheet in order to avoid close contacts between adjacent carbonate groups. The $2\sqrt 3$a’ × $2\sqrt 3$a’ superstructure is an example of the adaptability of the components of the interlayer space to the charge distribution of the metal-hydroxyl layers. The Mn2+ and Al3+ cations have a large difference in size, which apparently leads to the considerable degree of their order as di- and trivalent cations resulting in a higher degree of statistical order of the interlayer components. Both powder and single-crystal XRD data show that the samples studied belong to the hexagonal branch of two-layer polytypes (2T or 2H) with d00n ≈ 7.57 Å. The chemical composition of the samples studied is close to the ideal formula. The Raman spectrum of charmarite is reported and the band assignment is provided.

Publisher

Mineralogical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3