Evidence of the anthropogenic origin of the ‘Carmel sapphire’ with enigmatic super-reduced minerals

Author:

Galuskin EvgenyORCID,Galuskina IrinaORCID

Abstract

AbstractCorundum with inclusions of enigmatic super-reduced minerals was found in mineral separates received as a result of alluvial sediment exploration near Mt Carmel, Israel by theShefa YamimCompany. This corundum, registered as ‘Carmel sapphireTM’, has been an object of numerous publications by W. Griffin's scientific team, in which they propose a questionable hypothesis of sapphire formation at the crust–mantle boundary with the participation of CH4+H2fluids. Typically the Carmel sapphire is in small fragments of breccia with white cement, which in the opinion of Griffinet al.is a carbonate-cemented volcanic ash. Our investigation of the ‘white breccia’ showed that it consists of unsorted angular fragments of Carmel sapphire from ~1 μm to 7 mm in size cemented by aluminium hydroxides (bauxite) and is a waste product of the fused alumina process, i.e. it has an anthropogenic origin. Phases typical for slags of fused alumina production and metallurgical slags were identified in the ‘white breccia’. Carmel sapphire has numerous microscopic spherical inclusions of Si–Fe alloy indicating that the removal of Si and Fe from the corundum melt occurred at a temperature >2000°С. Osbornite, TiN, from Carmel sapphire has a chemical zonation characteristic of osbornite from fused alumina with enrichment of central zones in carbon. Comparison of the growth heterogeneity of Carmel sapphire and ‘electrocorundum’ indicates that the crystallisation of the corundum melt proceeded in a similar way. Unfortunately, in the case of Carmel sapphire from the Carmel locality, the contamination of geological samples with anthropogenic material has led to popularisation of biased views.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Reference49 articles.

1. Osbornite in Cb/Ch-like carbonaceous chondrite Isheyevo;Grokhovsky;69th Annual Meteoritical Society Meeting,2006

2. Toledoite, IMA 2022-036, in: CNMNC Newsletter 68;Ma;Mineralogical Magazine,2022f

3. Petrology of ALH85085: a chondrite with unique characteristics

4. Discussion of “Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags” by Litasov et al. (Lithos, v.340–341, p.181–190);Griffin;Lithos,2019b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3