The position of vanadium in the crystal structure of zoisite, variety tanzanite: Structural refinement, optical absorption spectroscopy and bond-valence calculations

Author:

Bačík PeterORCID,Wildner Manfred,Cempírek JanORCID,Škoda Radek,Cibula Peter,Vaculovič Tomáš

Abstract

AbstractVanadium is the dominant trace element and chromophore in tanzanite, the most valued gemmological variety of zoisite. The structure of zoisite–tanzanite was obtained by structural refinement to assess the vanadium location in the zoisite structure. However, the small V content in tanzanite evidenced by electron microprobe and laser ablation inductively coupled plasma mass spectrometry limits the exact determination of the V position in the zoisite structure. Structural refinement revealed that the average bond length of the less distorted M1,2O6 octahedron is below 1.90 Å, and M3O6 has slightly longer bonds with an average of ca. 1.96 Å. The M1,2 site is slightly overbonded with a bond-valence sum (BVS) of 3.03 vu, whereas M3 is slightly underbonded (BVS = 2.78 vu). Optical absorption spectra revealed that most V is trivalent, but a small portion is probably in a four-valent state. Therefore, crystal field Superposition Model and Bond-Valence Model calculations were applied based on several necessary assumptions: (1) V occupies octahedral sites; and (2) it can occur in two oxidation states, V3+ or V4+. Crystal field Superposition Model calculations from the optical spectra indicated that V3+ prefers occupying the M1,2 site; the preference of V4+ from the present data was impossible to determine. Bond-Valence Model calculations revealed no unambiguous preference for V3+, although simple bond-length calculation suggests the preference of the M3 site. However, it is quite straightforward that the M1,2 site is better suitable for V4+. If the possible octahedral distortion is considered, the M1,2O6 octahedron is subject to a smaller change in distortion if occupied by V3+ than the M3O6 octahedron. Consequently, considering the results of both the crystal field Superposition Model and Bond-Valence Model calculations, we assume that both V3+ and V4+ prefer the M1,2 site.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3