Oldsite, K2Fe2+[(UO2)(SO4)2]2(H2O)8, a new uranyl sulfate mineral from Utah, USA: its description and implications for the formation and occurrences of uranyl sulfate minerals

Author:

Plášil JakubORCID,Kampf Anthony R.ORCID,Ma ChiORCID,Desor Joy

Abstract

AbstractOldsite (IMA2021-075), ideally K2Fe2+[(UO2)(SO4)2]2(H2O)8, is a new uranyl sulfate mineral found on specimens from the North Mesa Mine group, Temple Mountain, San Rafael district, Emery County, Utah, USA. It is a secondary mineral occurring with alum-(K), halotrichite, metavoltine, quartz, römerite, stanleyite, sulphur, szomolnokite and mathesiusite. It forms rectangular blades flattened on {010} and elongated on [001], reaching ~0.3 mm in length. Crystals are yellow in colour, transparent with a vitreous lustre; the streak is very pale yellow. The mineral is non-fluorescent. Cleavage is excellent on {100} and perfect on {010}; the Mohs hardness is ~2. Crystals are brittle with irregular, splintery fracture. The density measured by flotation in a mixture of methylene iodide and toluene is 3.31 g⋅cm–3; the calculated density is 3.298 g⋅cm–3 for the empirical formula and 3.330 g⋅cm–3 for the ideal formula. Oldsite is biaxial (+), with α = 1.552(2), β = 1.556(2) and γ = 1.588(2) (measured in white light). The 2V measured directly on a spindle stage is 37(1)°; the calculated 2V is 39.6°. Dispersion is r < v, moderate. The optical orientation is X = b, Y = a and Z = c. The mineral is non-pleochroic. The empirical formula of oldsite (on the basis of 28 O apfu) is K1.93(Fe2+0.53Zn0.31V3+0.09Mg0.08)Σ1.02[(U0.98O2)(S1.01O4)2]2(H2O)8. The Raman spectrum is dominated by the vibrations of SO42– and UO22+ units. Oldsite is orthorhombic, Pmn21, a = 12.893(3), b = 8.276(2), c = 11.239(2) Å, V = 1199.2(5) Å3 and Z = 2. The five strongest powder X-ray diffraction lines are [dobs, Å (I, %) (hkl) ]: 8.29 (59) (010), 6.47 (82) (200), 5.10 (62) (210), 4.65 (100) (012, 211) and 3.332 (55) (022, 221). The crystal structure of oldsite was refined from single-crystal X-ray data to R = 0.0258 for 2676 independent observed reflections, with Iobs > 3σ(I). Oldsite is an Fe2+ analogue of svornostite; its crystal structure is based upon infinite chains of uranyl-sulfate polyhedra, which comprises pentagonal UO7 bipyramids sharing four of their equatorial vertices with sulfate tetrahedra such that each tetrahedron is linked to two uranyl bipyramids to form an infinite chain (the free, non-linking equatorial vertex of the uranyl bipyramid is an H2O group). The broader discussion on the origin and composition of uranyl sulfate minerals is made. The new mineral name honours American mineralogist, Dr. Travis A. Olds for his contribution to uranium mineralogy.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Reference71 articles.

1. Bobjonesite, V4+ O (SO4) (H2O)3, a new mineral species from Temple Mountain, Emery County, Utah, U.S.A;Schindler;The Canadian Mineralogist,2003

2. Seaborgite, LiNa6K2(UO2)(SO4)5(SO3OH)(H2O), the first uranyl mineral containing lithium;Kampf;American Mineralogist,2021

3. Mineralogische Notizen II. 17. Uranocher;Weisbach;Neues Jahrbuch für Mineralogie,1882

4. Geschieberite, K2(UO2)(SO4)2(H2O)2, a new uranyl sulfate mineral from Jáchymov;Plášil;Mineralogical Magazine,2015a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3