Stable isotope and geochemical evidence for genesis of secondary copper deposits at Girilambone, New South Wales, Australia

Author:

Melchiorre Erik B.ORCID

Abstract

AbstractThe Girilambone copper deposit of New South Wales, Australia, serves as an end-member model for development of a classic oxidation-zone profile in an environment virtually free of both the effects of active tectonics and significant fluctuation in the local water table. The oxidation zone of other copper deposits may be interpreted for history of recently active tectonics, palaeoclimate, and water-table stability by comparison to the Girilambone deposit. Unlike the oxidation profiles of porphyry copper deposits of western North America, which have been overprinted by many water-table fluctuations produced by active tectonics, the Girilambone deposit appears to have little modification to the original oxidation profile. Oxidation of primary sulfides at Girilambone was an exothermic process facilitated by chemolithotrophic bacteria, recorded by malachite oxygen isotope thermometry estimates of up to 52°C, and very light malachite carbon isotope values. The bacteria generated CO2 which migrated upwards to react with copper rich meteoric fluids of the vadose zone to precipitate malachite. Unlike porphyry copper deposits of western North America which experienced recent tectonic activity, the secondary minerals (clays, iron oxides and copper carbonates) at Girilambone were not repeatedly fractured and offset during oxidation to re-establish permeability. This reduced permeability of the oxidation zone and slowed the release of CO2 from the system, producing significantly elevated partial pressure of CO2, sufficient for azurite formation to dominate. Azurite oxygen and carbon isotope values indicate formation at lower temperatures up to 32°C, and with less bacterial activity than for malachite. The sulfide-digesting bacteria at Girilambone were relatively free of seasonal swings in population, as the deposit does not have the interbanded azurite and malachite typical of episodic bacterial populations triggered by seasonal precipitation. Thus the absence of significant Cu-carbonate banding at Girilambone serves as a palaeoclimate indicator. Deeper in the Girilambone oxidation zone, native copper and cuprite dominate, whereas chalcocite formed an enrichment blanket just above and at the modern water table. Oxygen and carbon isotope values for pseudomorphs of malachite after azurite indicate that these were generated as a retrograde reaction when CO2 production from bacterial digestion of sulfides waned and temperatures in the oxidation zone were near ambient. In the post mining environment, chloride-rich groundwater seeps actively precipitate atacamite, while exposed remnants of sulfide masses form an outer rind of porous malachite. Exceptions to this oxidation zone sequence occur due to localised fluid channelisation and perched water-table lenses that generated mineralogical overprints.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Reference34 articles.

1. Thermodynamic properties of copper carbonates—malachite Cu2(OH)2CO3 and azurite Cu3(OH)2(CO3)2;Kiseleva;Physics of Chemistry and Mineralogy,1992

2. Paleomagnetic evidence for periods of intense oxidative weathering, McKinnons mine, Cobar, New South Wales

3. Stable carbon isotopes in tree rings of beech: climatic versus site-related influences

4. Aeris Resources Limited (Brisbane, Queensland, Australia) (2021) Accessed from https://www.aerisresources.com.au/operations/tritton-copper-operations/#murrawombie-underground on 08/04/2021.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ore deposits formed in the Critical Zone: Laterite Ni, Co, REE, Nb and supergene Cu;Reference Module in Earth Systems and Environmental Sciences;2024

2. Minerals, crystal structures and geochemistry;Mineralogical Magazine;2022-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3