Hellandite-(Y)–hingganite-(Y)–fluorapatite retrograde coronae: a novel type of fluid-induced dissolution–reprecipitation breakdown of xenotime-(Y) in the metagranites of Fabova Hoľa, Western Carpathians, Slovakia

Author:

Ondrejka MartinORCID,Molnárová Alexandra,Putiš MariánORCID,Bačík PeterORCID,Uher Pavel,Voleková BronislavaORCID,Milovská StanislavaORCID,Mikuš Tomáš,Pukančík Libor

Abstract

AbstractTwo contrasting reaction coronae were developed around rare earth element (REE) accessory phosphates in Variscan metagranitic rocks, which have been overprinted by Alpine blastomylonitisation from the Fabova Hol'a Massif, in the Veporic Unit, Western Carpathians, Central Slovakia. The Th–U–Pb total EPMA age determination of primary magmatic monazite-(Ce) from the metagranite indicates a Carboniferous (Mississippian, Tournaisian) age of 355 ± 1.9 Ma. Monazite-(Ce) breakdown resulted in impressive, though common, fluorapatite ± Th-silicate + allanite-(Ce) + clinozoisite coronae. The alteration of xenotime-(Y) produced a novel type of secondary coronal micro-texture consisting of a massive fluorapatite mantle zone and tiny satellite crystals of hellandite-(Y) [(Ca,REE)4Y2Al□2(B4Si4O22)(OH)2] and hingganite-(Y) [Y2□Be2Si2O8(OH)2] of ~1–5 μm, and rarely ≤10 μm in size. The localised occurrence of Y–B–Be silicates, which are associated closely with other secondary minerals, suggests the involvement of B and Be during the metasomatic alteration transformation of xenotime-(Y). General reactions for monazite-(Ce) and xenotime-(Y) decomposition, including the fluids involved, can be written as follows: Mnz + (Ca, Fe, Si, Al and F)-rich fluid → FAp + Ht + Aln + Czo; Xtm + (Ca, Fe, Si, Al, F, B and Be)-rich fluid → FAp + Hld + Hin + Czo.The granitic rocks underwent Early Cretaceous burial metamorphism under greenschist- to lower amphibolite-facies PT conditions. Subsequently, Alpine post-collisional uplift and exhumation of the Veporic Unit, starting from the Late Cretaceous epoch, was accompanied by a retrograde tectono-metamorphic overprint; the activity of external fluids, caused the formation of secondary coronae minerals around monazite-(Ce) and xenotime-(Y). A portion of B (± Be) should have been liberated from the metagranite feldspars, micas, or xenotime-(Y) enriched in (Nb,Ta)BO4 (schiavinatoite or béhierite) components. However, the principal source of B and Be in fluids necessary for the production of hellandite and hingganite, was probably of external origin from adjacent magmatic, metamorphic, or sedimentary rocks (Permian granites, rhyolites and sedimentary rocks, and Palaeozoic metapelites).

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Reference151 articles.

1. U-Pb zircon age of the youngest magmatic activity in the High Tatra granites (Central Western Carpathians)

2. Tectonothermal evolution of the internal Alps and Carpathians: Evidence from 40Ar/39Ar mineral and whole-rock data;Dallmeyer;Eclogae Geologicae Helvetiae,1996

3. Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia)

4. A crystal-chemical investigation of Alpine gadolinite;Demartin;The Canadian Mineralogist,1993

5. Fluid-induced breakdown of monazite in medium-grade metasedimentary rocks of the Pontremoli basement (Northern Apennines, Italy);Pò D.;Journal of Metamorphic Geology,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3