Atomic-scale models of dislocation cores in minerals: progress and prospects

Author:

Walker A. M.,Carrez P.,Cordier P.

Abstract

AbstractRecent advances in computer simulation at the atomic scale have made it possible to probe the structure and behaviour of the cores of dislocations in minerals. Such simulation offers the possibility to understand and predict the dislocation-mediated properties of minerals such as mechanisms of plastic deformation, pipe diffusion and crystal growth. In this review the three major methods available for the simulation of dislocation cores are described and compared. The methods are: (1) cluster-based models which combine continuum elastic theory of the extended crystal with an atomistic model of the core; (2) dipole models which seek to cancel the long-range elastic displacement caused by the dislocation by arranging for the simulation to contain several dislocations with zero net Burgers vector, thus allowing a fully periodic super-cell calculation; and (3) the Peierls-Nabarro approach which attempts to recast the problem so that it can be solved using only continuum-based methods, but parameterizes the model using results from atomic-scale calculations. The strengths of these methods are compared and illustrated by some of the recent studies of dislocations in mantle silicate minerals. Some of the unresolved problems in the field are discussed.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3