Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle

Author:

Ewing R. C.

Abstract

AbstractDuring the past 70 years, more than 2000 metric tonnes of Pu, and substantial quantities of the ‘minor’ actinides such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g.239Pu), a source of fissile material for nuclear weapons (e.g.239Pu and2Np), and of environmental concern because of their long half-lives and radiotoxicity (e.g.239Pu and237Np). There are two basic strategies for the disposition of these transuranium elements: (1) to ‘burn’ or fission the actinides using nuclear reactors or accelerators; (2) to dispose of the actinides directly as spent nuclear fuel or to ‘sequester’ the actinides in chemically durable, radiation-resistant materials that are also suitable for geological disposal. For the latter strategy, there has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore,A2B2Oi (A =rare earths;B =Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions(B =Zr, Hf) are stable to very high doses of α-decay event damage. Recent developments in the understanding of the properties of actinide-bearing solids have opened up new possibilities for the design of advanced nuclear materials that can be used as fuels and waste forms. As an example, the amount of radiation damage that accumulates over time can be controlled by the selection of an appropriate composition for the pyrochlore and a consideration of the thermal environment of disposal. In the case of deep borehole disposal (3—5 km), the natural geothermal gradient may provide enough heat to reduce the amount of accumulated radiation damage by thermal annealing.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3