A re-examination of water in agate and its bearing on the agate genesis enigma

Author:

Moxon Terry

Abstract

AbstractDehydration of silanol and molecular water in 60 agates from 12 hosts with ages between 23 to 2717 Ma has been investigated using desiccators and high-temperature furnace heating. There are wide differences in the water data obtained under uncontrolled and fixed atmospheric water vapour pressure conditions. After agate acclimatization at 20°C and 46% relative humidity, the total water (silanol and molecular) was determined in powders and mini-cuboids by heating samples at 1200°C. Agates from hosts < 180 Ma all showed a greater mass loss using powders and demonstrate that after prolonged high-temperature heating, silanol water is partially-retained by the mini-cuboids. Desiccator dehydration of powders and slabs shows that powder preparation can produce water losses; this is particularly relevant in agates from hosts < 180 Ma. The identified problems have consequences for water quantification in agate and chalcedony using infrared or thermogravimetric techniques. Mobile and total water in agate is considered in relation to host-rock age, mogánite content and crystallite size. Links are observed between the various identified water contents allowing comment on quartz development and agate genesis. The water data also supports previous claims that agates from New Zealand and Brazil were formed long after their host.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3